Kinetic analysis of water transport through a single-file pore

نویسندگان

  • JA Hernandez
  • J Fischbarg
چکیده

We apply the diagrammatic method developed by Hill (1977. Free Energy Transduction in Biology. Academic Press, New York) to analyze single-file water transport. We use this formalism to derive explicit expressions for the osmotic and diffusive permeabilities Pf and Pd of a pore. We first consider a vacancy mechanism of transport analogous to the one-vacancy pore model previously used by Kohler and Heckmann (1979. J. Theor. Biol. 79:381-401). (a) For the general one-vacancy case, we find that the permeability ratio can be expressed by Pf/Pd = (Pf/Pd)eqf(wA,wB), where the second factor is a function of the water activities in the two adjoining compartments A and B. As a consequence, the permeability ratio in general can effectively differ from its value at equilibrium. We also find that n - 1 less than or equal to (Pf/Pd)eq less than or equal to n, a result already proposed by Kohler and Heckmann (1979. J. Theor. Biol. 79:381-401). (b) When vacancy states are transient intermediates, the model can be reduced to a diagram consisting of only fully occupied states. Such a diagram resembles the one describing a no-vacancy mechanism of transport (c), but in spite of the similarity the expressions obtained for the permeability coefficients still retain the basic relationships of the original (a) nonreduced one-vacancy model. (c) We then propose a kinetic description of a no-vacancy mechanism of single-file water transport. In this case, the expressions derived for Pf and Pd are formally equivalent to those obtained by Finkelstein and Rosenberg (1979. Membrane Transport Processes. Vol. 3. C.F. Stevens and R.W. Tsien, editors, Raven Press, New York. 73-88.) A main difference with the vacancy mechanism is that here the permeability coefficients are independent of the water activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mobility of a one-dimensional confined file of water molecules as a function of file length.

Confinement of water by pore geometry to a one-dimensional file of molecules interacting with the pore alters the diffusion coefficient D(W). Here we report an exponential dependence of D(W) on the number of water positions in the pore. The result is based on measurements of single channel water permeabilities of structurally similar peptidic nanopores of different length. The inconsistency wit...

متن کامل

Water and ion permeation in bAQP1 and GlpF channels: a kinetic Monte Carlo study.

The kinetic Monte Carlo reaction-path-following technique is applied to determine the lowest-energy water pathway and the coordinating amino acids in bAQP1 and GlpF channels, both treated as rigid. In bAQP1, water molecules pass through the pore between the asparagine-proline-alanine (NPA) and selectivity filter (SF) sites one at a time. The water chain is interrupted at the SF where one water ...

متن کامل

Water permeability of gramicidin A-treated lipid bilayer membranes

In membranes containing aqueous pores (channels), the osmotic water permeability coefficient, P f, is greater than the diffusive water permeability coefficient, P d. In fact, the magnitude of P f/P d is commonly used to determine pore radius. Although, for membranes studied to date, P f/P d monotonically declines with decreasing pore radius, there is controversy over the value it theoretically ...

متن کامل

Design of peptide-membrane interactions to modulate single-file water transport through modified gramicidin channels.

Water permeability through single-file channels is affected by intrinsic factors such as their size and polarity and by external determinants like their lipid environment in the membrane. Previous computational studies revealed that the obstruction of the channel by lipid headgroups can be long-lived, in the range of nanoseconds, and that pore-length-matching membrane mimetics could speed up wa...

متن کامل

Kinetic analysis of translocation through nuclear pore complexes.

The mechanism of facilitated translocation through nuclear pore complexes (NPCs) is only poorly understood. Here, we present a kinetic analysis of the process using various model substrates. We find that the translocation capacity of NPCs is unexpectedly high, with a single NPC allowing a mass flow of nearly 100 MDa/s and rates in the order of 10(3) translocation events per second. Our data fur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 99  شماره 

صفحات  -

تاریخ انتشار 1992